
Acceptance Test Generation with Large Language
Models: An Industrial Case Study

Abstract—Large language model (LLM)-powered assistants
are increasingly used for generating program code and unit
tests, but their application in acceptance testing remains un-
derexplored. To help address this gap, this paper explores the
use of LLMs for generating executable acceptance tests for web
applications through a two-step process: (i) generating acceptance
test scenarios in natural language (in Gherkin) from user stories,
and (ii) converting these scenarios into executable test scripts
(in Cypress), knowing the HTML code of the pages under
test. This two-step approach supports acceptance test-driven
development, enhances tester control, and improves test quality.
The two steps were implemented in the AutoUAT and Test Flow
tools, respectively, powered by GPT-4 Turbo, and integrated
into a partner company’s workflow and evaluated on real-world
projects. The users found the acceptance test scenarios generated
by AutoUAT helpful 95% of the time, even revealing previously
overlooked cases. Regarding Test Flow, 92% of the acceptance
test cases generated by Test Flow were considered helpful: 60%
were usable as generated, 8% required minor fixes, and 24%
needed to be regenerated with additional inputs; the remaining
8% were discarded due to major issues. These results suggest that
LLMs can, in fact, help improve the acceptance test process, with
appropriate tooling and supervision.

Index Terms—Acceptance Testing, Large Language Models,
Automatic Test Generation, Web Application Testing

I. INTRODUCTION

Recent advances in generative artificial intelligence (AI) and
large language models (LLMs) [1] have enabled AI-powered
assistants, like GitHub Copilot1, capable of accurately gener-
ating code and unit tests from textual prompts [2], enhancing
developer and tester productivity [3]–[5]. However, LLMs
are still underexplored for acceptance test (AT) generation
[6]—the highest test level, focused on validating that the soft-
ware meets user expectations and business requirements [7].

To help address this gap, this paper explores the use of
LLMs to improve the acceptance test process, especially in the
context of agile processes and practices, such as: (i) capturing
user requirements as user stories (US); (ii) refining them with
(user) acceptance tests written in a restricted natural language
(NL) accessible for non-technical users and amenable for
subsequent automation, like Gherkin2 [8], following accep-
tance test-driven development (ATDD) [9] and behaviour-
driven development (BDD) [10] principles; (iii) automating
them using popular frameworks like Selenium3 or Cypress4

[11], to reduce manual testing [12] and enable continuous
integration (CI).

1https://github.com/features/copilot
2https://cucumber.io/docs/gherkin/
3https://www.selenium.dev/
4https://www.cypress.io/

More specifically, we aim to partially automate the last two
activities by leveraging LLMs’ natural language understanding
and code generation capabilities to: (i) automatically generate
acceptance test scenarios from user stories, and (ii) automati-
cally convert these scenarios into executable test scripts.

Our research addresses two key questions:
• RQ1: To what extent can LLMs help in generating

accurate and comprehensive acceptance test scenarios in
natural language from user stories?

• RQ2: To what extent can LLMs help in generating
accurate and complete5 executable test scripts from ac-
ceptance test scenarios in natural language?

To address them, we implemented the two generation steps
in separate tools—AutoUAT and Test Flow—which can be
used independently or together. To ease integration and evalu-
ation in a partner company in the automotive sector, we used
GPT-4 Turbo as the LLM, Gherkin and TypeScript as the target
languages, and Cypress as the test automation framework.

While assessing long-term productivity and quality gains
would require further studies, we expect to help address
common industry issues: (i) AT writing is often seen as tedious
and low-priority, risking missed edge cases; and (ii) test script
writing adds workload for developers, potentially shifting
focus from understanding requirements to test success [12].

The main contributions of our work are:
• AutoUAT - an LLM-powered tool, integrated in an indus-

trial environment, that automatically generates acceptance
test scenarios in Gherkin from user stories;

• Test Flow - an LLM-powered tool, integrated in an indus-
trial environment, that automatically generates executable
test scripts for end-to-end web application testing in Cy-
press, based on Gherkin test scenarios’ specifications and
the HTML code of the web pages under test purged from
irrelevant information, with minimal user intervention;

• Evaluation results - results of evaluation studies in our
automotive partner, with 95% of acceptance test scenarios
generated by AutoUAT and 92% of acceptance test scripts
generated by Test Flow considered helpful, and very
positive user feedback.

The rest of the paper is organized as follows: Sec. II de-
scribes our test generation approach. Sec. III outlines the tool
implementation and integration in an industrial workflow. Sec.
IV presents experimental results and user feedback, addressing
our research questions. Sec. V discusses related work, and Sec.
VI concludes with key findings and future directions.

5By ’complete’, we mean covering all steps.



II. ACCEPTANCE TEST GENERATION APPROACH

A. Overall Approach

Our two-step approach for generating executable acceptance
test scripts from user stories is outlined in Fig. 1.

The first LLM-powered tool — AutoUAT — was designed
to generate Gherkin acceptance test scenarios directly from
user story titles and descriptions. The second LLM-powered
tool — TestFlow — then takes these Gherkin test scenarios
as input, along with the initial user story description and
the HTML code of the web pages under test, to generate
executable test scripts in Cypress (in TypeScript syntax).

User 
Story

Acceptance 
Test Scenarios

(Gherkin)

Acceptance 
Test Script 
(Cypress)

AutoUAT Test Flow

Web App 
UI

<

<html>
…

</html>

As a …
I want …
So that…

Given …
When …
Then … .cy.ts

Fig. 1. Acceptance Test Generation with AutoUAT and Test Flow.

This approach was designed to effectively support ATDD:
NL test scenarios can be generated when new user stories
are created to clarify requirements and guide implementation;
once the application user interface (UI) is ready, executable
test scripts can be created, mapping test steps in the test sce-
narios to specific actions and UI elements. It also gives testers
and other stakeholders more control, as they can review the
generated test scenarios and create their own before converting
them to executable test scripts, improving test quality.

Model selection and prompt engineering are described in
the next subsections.

B. Model Selection

The study required deploying the model in our industrial
partner’s Azure environment for privacy and security reasons.
Thus, we evaluated cutting-edge models available in Azure,
specifically OpenAI’s GPT and Meta’s CodeLlama families.

Only the CodeLlama Instruct 70B model had comparable
benchmarks to the GPT family, but it required a high-cost
Azure machine with multiple GPUs. In contrast, Azure Ope-
nAI provides a pay-as-you-go service, which, as of February
2024, included the latest GPT-4 Turbo6 model with a 128,000-
token context window. This model performed better in bench-
marks such as HumanEval [13] and MBPP [14] compared to
CodeLlama Instruct 70B7. The ’gpt-4-1106-preview’ version
was offered at a promotional price, making it the preferred
choice due to its performance and cost-effectiveness.

6https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
7https://huggingface.co/meta-llama/Llama-2-70b-chat-hf

C. From User Stories to Acceptance Test Scenarios

This phase aims to derive acceptance tests from user sto-
ries, translating high-level requirements into detailed Gherkin
scenarios to validate system behavior, ensure shared under-
standing among stakeholders, and guide implementation.

The inputs for this phase include:
• User Story Title: A concise, descriptive name capturing

the feature or functionality from the user’s perspective.
• User Story Description: A detailed outline of func-

tionality, including requirements, acceptance criteria, and
expected outcomes.

The output is a set of acceptance test scenarios in Gherkin
format, covering key aspects of the user stories for compre-
hensive validation.

To achieve accurate, comprehensive, and robust outputs
across diverse scenarios, an iterative prompt engineering pro-
cess was applied to optimize clarity, context awareness, and
response specificity — see the final prompt in Appendix A.

D. From Acceptance Test Scenarios to Executable Test Scripts

The inputs for this phase are the user story to be tested,
the corresponding Gherkin acceptance test scenarios, and the
HTML code of the pages under test. The output is a Cypress
test script automating all the specified Gherkin scenarios.

Initial experiments showed no need for fine-tuning, as the
model generated valid TypeScript syntax for Cypress, likely
due to the widespread adoption of this technology stack.

The following metrics were used to assess model’s perfor-
mance and identify areas for improvement during the prompt
engineering process:

• Syntactic Correctness: The proportion of generated tests
adhering to TypeScript syntax.

• Semantic Relevance: The proportion of generated tests
reflecting the inputted Gherkin scenarios.

• Accssibility: The proportion of generated tests with com-
prehensive natural language comments.

• Prompt Size: An evaluation of both input prompt and
response sizes, for cost considerations.

The prompt engineering process involved the following
steps: gathering a set of inputs, constructing a basic prompt,
evaluating the performance metrics against the inputs, and
iteratively modifying the prompt to enhance the metrics that
exhibited poorer performance.

The final prompt consists of a user and a system prompt.
The user prompt contains information specific to the feature

under test (to be collected automatically), including:
• User Story: For context on the feature being tested.
• Gherkin Scenarios: For context on the test cases to

generate.
• Pages’ HTML: For context on the pages’ elements and

their identifiers.
To reduce costs related to the prompt size, the HTML is

preprocessed to remove style and script elements, as these
were found unnecessary for the model’s understanding of the
HTML, and did not compromise the performance metrics.



Fig. 2. Flow Diagram of Test Flow.

Fig. 3. GitHub Action for Integrating Test Flow into Current Workflows.

The system prompt provides additional context on the prod-
uct and guides the model’s response, including (see Appendix
B):

• Product Context: For additional context on the product
being tested.

• Cypress Good Practices: For adherence to Cypress best
practices.

• Other Aspects: For addressing specific situations the
model was overlooking.

III. INTEGRATION IN THE INDUSTRIAL ENVIRONMENT

This section describes the tools developed to seamlessly in-
corporate our approach into our industrial partner’s operational
framework, enabling its evaluation in a real-world context,
whilst respecting confidentiality.

A. AutoUAT: From User Stories to Acceptance Test Scenarios

To integrate the process of transforming user stories into
acceptance test scenarios in an industrial environment and
gather user feedback and usage information, an automated
workflow was developed using the Microsoft Power Platform.

The process begins with users filling out a form with the
title and description of the user story. Its submission triggers an
HTTP request to an Azure container where the LLM is hosted.
The LLM processes the prompt provided by the tool with user
story information and system instructions and generates the
corresponding ATs. The generated ATs are then automatically
sent back to the user via a private message on Microsoft
Teams, who can also fill out a feedback form.

B. Test Flow: From Acceptance Test Scenarios to Test Scripts

Test Flow was developed for seamless integration into our
partner’s workflow with the architecture depicted in Fig. 2.



To minimize user input and improve usability, Python
modules were developed to automatically extract user stories
and Gherkin test scenarios from JIRA8, given the issue key,
and to retrieve HTML code of the pages under test stripped
from irrelevant style and script elements, given their URLs.
Then, the prompt is constructed following prompt engineering
results and sent to GPT-4 Turbo. Upon receiving the model’s
response, the generated code is extracted, validated for Type-
Script syntax, and finally returned to the user.

Test Flow can be easily integrated with current workflows as
it can be invoked through a Flask REST API. As an example
of this integration, it was implemented a GitHub Action,
illustrated in Fig. 3. Triggered on a new pull request (PR),
it extracts the necessary inputs (issue key and URLs) from the
PR description, sends a request with these inputs to Test Flow,
commits the generated tests to the source branch of the PR,
and executes them. As LLM outputs cannot be blindly trusted,
developers must review the code generated by Test Flow and
implement fixes, when necessary.

IV. EVALUATION

This section details the methods and results of the evaluation
efforts conducted with our industrial partner, including experi-
mental evaluations and user surveys. Additionally, it addresses
the research questions posed at the beginning and discusses
potential threats to the validity of our study. For confidentiality
reasons, specific datasets used in this study are not disclosed.

A. AutoUAT Workshop

To gather initial user feedback about AutoUAT, we con-
ducted a workshop with six experienced product owners who
regularly write user stories and ATs. The session began with a
15-minute introduction to AutoUAT, followed by 15 minutes
of hands-on use. Feedback was collected through a survey with
10 questions and an open comments section.

All participants had over three years of experience and were
routinely involved in writing user stories (1 to 10 per sprint)
and associated acceptance tests, ensuring feedback relevance.

Participants rated the quality of the AutoUAT outputs with
an average high score of 8 out of 10 (Fig. 4). The likelihood
of adoption was unanimously high, likely saving time and
improving the acceptance criteria quality (Fig. 5).

A follow-up comment from a participant further highlights
the tool’s impact: ”The tool is extremely helpful. I started
writing user stories in Gherkin format, and this tool helped
me identify missing acceptance criteria and refine design and
UX. It saves me time, and I plan to continue using it.”

B. AutoUAT Usage

In a second validation phase, the developed tool was made
available to everyone within the company for a period of two
months, and data was collected on its usage.

In total, the tool was utilized 166 times by the company’s
professionals. After each use, users were prompted to provide
feedback on the tool outputs. To the question ”Was this

8https://www.atlassian.com/software/jira

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f r
es

po
ns

es

After testing it, how do you classify the generated User Acceptance Tests 
generated by this tool?

Fig. 4. Workshop Participants’ Feedback on AutoUAT Outputs.

0 6 12

Using this tool, how likely is it that the quality of
your Acceptance Criteria would improve?

Using this tool, how likely is it that it would save
you time?

Using this tool, how likely would you be to feel
less tired from being relieved of repetitive tasks?

How likely are you to start using this tool?

Very Unlikely Somewhat Unlikely Neutral Somewhat Likely Very Likely

100% 0% 100%

Fig. 5. Workshop Participants’ Feedback on AutoUAT Adoption and Benefits.

AT useful?”, only 3 respondents answered negatively, while
62 respondents answered positively, representing 95% of the
respondents (Fig. 6).

62

3

Was this AT useful?

Yes, this was
helpful
No, this was not
helpful

Fig. 6. Users’ Feedback on the AutoAUT Outputs.

Additionally, users were encouraged to leave additional
comments to complement their responses. Some noteworthy
comments include: ”In this situation, the tool allowed me to
think about an error scenario that we were not considering.
This had an impact on the product, allowing us to create an
error screen in the UX.”

In this case, the user requested the generation of acceptance
test scenarios for the ”Alphabet User Sign-Up” story described
in Appendix C. Although the title lacks clarity, the model accu-
rately captured the intended functionality (see Appendix D),
demonstrating its flexibility in extracting functionality from
context and tolerating minor errors. The last two scenarios
demonstrate the model’s ability to extend beyond the explicit
requirements of the user story.



C. Test Flow Experimental Evaluation

The validation process for Test Flow started with a quantita-
tive evaluation of the tool for the performance metrics defined
in Section II-D, using selected issues from a company’s e-
commerce product.

In order to ensure data quality and relevance, JIRA issues
were selected based on the following criteria:

• Story Classification: The issue must be classified as a
Story.

• User Perspective: The story must be written from the
user’s perspective.

• Gherkin Tests: The issue must have acceptance tests in
Gherkin (handwritten or generated with AutoUAT).

• Quality Assessment: The issue must have medium to
high quality.9

• Team Assignment: The issue must be preferably as-
signed to the teams we were most in contact with.10

Given the product’s maturity and its current focus on UI
modifications and defect resolution rather than new feature
development, the sample size was inevitably limited. Never-
theless, we managed to compile a final dataset of 13 issues,
each with their US description and Gherkin test scenarios, and
gathered the corresponding page URLs for each of them.

In order to validate the product flow comprehensively, we
selected issues that targeted a diverse set of pages. Table I
illustrates the distribution of the selected issues and Gherkin
scenarios according to the related page.

TABLE I
INPUT SUBJECTS FOR THE TEST FLOW EXPERIMENTAL EVALUATION.

Web Page #Stories #Gherkin Scenarios
Product List Page 2 9
Product Detail Page 3 10
Cart Page 2 7
Checkout Page 4 16
Orders Page 2 8
Total 13 50

As output, Test Flow generated a Cypress test script for
each issue (user story), resulting in 13 scripts and 50 test cases
(one per Gherkin scenario) in total. The 50 test cases generated
were rigorously evaluated, through a detailed manual analysis,
against the previously defined performance metrics. Concur-
rently, strategies were devised and implemented to rectify the
erroneously generated test cases, providing insights into the
effort required to correct these test cases. The workflow for
this framework and respective results is depicted in Fig. 7. The
results for the performance metrics are as follows:

• Syntactic Correctness: 100% of the generated test cases
adhered to TypeScript syntax.

• Semantic Relevance: 60% of the generated test cases
accurately mirrored the original Gherkin scenarios.

9This was subjectively determined based on whether the US provided
sufficient context, was unambiguous, and maintained consistent naming con-
ventions.

10To facilitate the resolution of potential queries and the validation of
outputs.

Fig. 7. Procedure for evaluating and classifying the test cases generated with
Test Flow. The arrows are labelled with the number of test cases that adhered
to the corresponding path in our experiment.

• Accessibility: 100% of the generated test cases had
comprehensive NL comments.

• Prompt Size: Input prompts averaged 9500 tokens;
output prompts averaged 750 tokens.

The tests generated were syntactically correct and included
detailed NL comments, demonstrating the solutions’s robust-
ness and accessibility. However, the evaluation revealed im-
provement areas, particularly in semantic relevance, as 40%
of test cases did not accurately reflect the Gherkin scenarios.
Manual analysis categorized these test cases into three types:

• Lack of Context (12 cases): Inputted US and Gherkin
scenarios lack crucial context for the model to correctly
understand the functionality to test.

• Minor Errors (4 cases): Errors of less than one line of
code that require less than two minutes per test case to
comprehend and rectify.

• Complex Errors: (4 cases) Remaining errors. In these
cases, it is considered not worth the effort to fix them.



Need additional input
24%

Need minor fixes
8%

Need major fixes
8%

Valid
60%

Fig. 8. Classification of 50 Executable Test Cases Generated by Test Flow.

Fig. 8 provides a visual representation of this distribution.
The tests within the first two categories constitute 32% of the
total generated test cases. As depicted in Fig. 7, these can
be rectified by enriching the input context and implementing
minor fixes (one line of code), respectively. Implementing
these strategies allowed us to elevate the semantic relevance
to 92%, leaving only the tests with complex errors. In such
cases, manual implementation from scratch is recommended.

Furthermore, a particular failed test revealed a discrepancy;
the US and Gherkin tests suggested that a button should be
disabled, whereas it was actually hidden. This discrepancy
pointed to a flaw in the application being tested, demonstrating
Test Flow’s defect detection capability.

The size of input and output prompts influences the cost
of using Test Flow. Based on the pricing of Azure OpenAI’s
GPT-4 Turbo as of June 2024, the average cost for generating
a test script per user story was 0.12C in this experiment.

Our investigation found no correlation between specific
pages and poorer test outcomes. Instead, test quality was more
closely linked to the clarity and context provided in the user
stories and Gherkin scenarios.

D. Test Flow Workshop and User Survey

Following the experimental evaluation of Test Flow, a
workshop was conducted with the company’s developers. It
included a 15-minute presentation on Test Flow’s capabilities,
a 15-minute demo of inputs and outputs, and a brief 3-minute
survey, which received 16 responses.

The survey targeted individuals who typically conduct Cy-
press testing, including developers (responsible for creating
tests for the features they develop) and Scrum Masters (who
also function as developers). Respondents could optionally
disclose their identity for follow-up; 11 did so.

Participant demographics are shown in Table II, with most
respondents being developers of an e-commerce product team,
with a wide range of experience levels.

To evaluate Test Flow, ten statements were presented on a
Likert scale from ”Strongly Disagree” to ”Strongly Agree.”
Respondents rated the solution’s intuitiveness, accessibility,
workflow integration, and potential to accelerate Cypress test
script creation. Fig. 9 shows the survey questions and results.

The statements were designed to ensure response validity
by including both positively and negatively phrased questions.

TABLE II
DEMOGRAPHICS OF 16 TEST FLOW SURVEY RESPONDENTS.

Current Role Experience Curr. Prod.
Developer 11 < 1 year 2 E-commerce 15
ScrumMaster 4 1-3 years 8 Other 1
Intern 1 4-5 years 4

> 5 years 2

Fig. 9. Results of the Test Flow User Survey (16 Respondents).

The overall feedback was highly positive, with consensus on
8 out of the 10 statements. Respondents found the solution
intuitive, accessible, and believed it could be easily integrated
into their workflows, enhancing the creation of Cypress tests.

However, statements 2 and 8 received mixed responses,
leading to follow-up discussions with 11 respondents who
opted for further engagement:

• For statement 2, ”I think that I would need the support of
a more technical person to be able to use the solution”,
four respondents initially agreed, and one strongly agreed.
Upon follow-up, the four clarified that they misunder-
stood the question and found the solution user-friendly.
The strongly agreeing respondent was anonymous and
could not be contacted.

• For statement 8, ”I believe this solution can be easily
integrated into our current CI/CD pipelines”, three re-
spondents disagreed, with only one available for follow-
up. Feedback indicated the issue stemmed from specific
CI/CD pipeline characteristics rather than the solution
itself, suggesting that integration may require customiza-
tion based on project needs.

During follow-up, participants also expressed concerns
about data security when using Generative AI, as the use of
company-hosted models was not emphasized in the presenta-
tion. Clarifying this point reassured participants.

Overall, Test Flow’s validation provided valuable insights,
highlighting its strengths and areas for improvement, includ-
ing enhancing adaptability, refining integration support, and
clearly communicating security measures.



E. Answer to Research Questions

Following the evaluation of both tools, we can address the
research questions outlined in Section I.

RQ1: To what extent can LLMs help in generating
accurate and comprehensive acceptance test scenarios in
natural language from user stories?

In 65 usage instances, the users considered the ATs gen-
erated by AutoUAT helpful 95% of the time. AutoUAT also
received very positive feedback from 6 product owners.

We conclude that AI-powered assistants like AutoUAT
have a strong potential to help product owners and
other stakeholders in creating high-quality acceptance test
scenarios from user stories with less effort.

RQ2: To what extent can LLMs help in generating accu-
rate and complete executable test scripts from acceptance
test scenarios in natural language?

Test Flow generated accurate and complete executable test
scripts from acceptance test scenarios in NL (with one test
case per test scenario) 60% of the time, improved to 92%
with minor fixes (8%) or additional contextual inputs (24%).
The generated scripts contained detailed comments in natural
language to facilitate their (mandatory) review by developers
responsible for test automation. Survey feedback was unani-
mously positive, emphasizing Test Flow’s potential to speed up
Cypress test creation and integrate smoothly into workflows.

We conclude that AI-powered assistants like Test Flow
have a strong potential to help developers in the translation
of NL acceptance test scenarios to executable test scripts
over the application UI with less effort.

However, further studies in industrial settings are needed to
better assess the long-term productivity and quality gains.

F. Threats to Validity

Several factors may limit the generalizability of our find-
ings:

• Context-Specific Results: Evaluation was performed
within a single company with strong quality processes.
The approach may yield different outcomes in other envi-
ronments or domains, especially where process or product
standards are lacking (e.g., data-test-ids for testability).

• Sample Size Limitations: The relatively small number
of user stories tested with Test Flow and AutoUAT may
affect the generalizability of results. A larger, more varied
sample across different projects would enhance reliability.

• Short Evaluation Period: The two-month evaluation
may miss long-term usability issues, evolving user be-
haviors, and learning effects.

• Feedback Bias: Out of 166 usage instances of AutoUAT,
feedback was provided for only 65 instances, which may
not represent all users. Positive experiences might be
overrepresented, skewing acceptance rates.

These limitations indicate a need for further research and
validation across diverse industrial settings to fully understand
the approach’s effectiveness and constraints.

V. RELATED WORK

This section reviews existing literature and approaches
related to our work, highlighting their results, limitations, and
the unresolved challenges they present. By analysing these
approaches, we aim to underscore the gaps our methodology
addresses.

A. From User Stories to NL Acceptance Test Scenarios

The literature addressing automatic AT generation, specifi-
cally using LLMs within a BDD framework, is limited. In fact,
in [6], the authors identify several studies applying LLMs to
unit and system testing but note that “there is still no research
on the use of LLMs in integration testing and acceptance
testing”, underscoring a research gap our work seeks to fill.

A notable example is a recent study [15] that evaluates
the capabilities of several LLMs (GPT-3.5, GPT-4, Llama-
2-13B, and PaLM- 2) for generating syntactically correct
Gherkin scenarios from user stories. In an experiment with 50
user stories extracted from various sources, both GPT models
demonstrated superior performance, with syntax errors in only
one out of 50 generated feature files. They also manually
checked some generated acceptance tests for semantic validity.

In comparison, our approach uses the more recent GPT-4
Turbo model and includes a more comprehensive assessment
of the generated Gherkin scenarios by tool users (typically
product owners) in a real-world industrial setting, as well as
initial feedback on potential performance benefits, thus provid-
ing empirical insights into the practical impact of LLMs for
BDD. This industry-focused evaluation highlights the novelty
and relevance of our approach.

B. From Acceptance Test Scenarios to Executable Test Scripts

We identified two recent studies [16], [17] that examine
productivity gains from using AI assistants and other accel-
eration technologies for generating test scripts compared to
manual methods. Both studies start with test cases specified
in Gherkin, which are then converted into executable tests.

In [16], the authors compare the effort to create Web
end-to-end (E2E) test scripts based on natural language test
descriptions using several approaches:

• Manual - test scripts are crafted manually by the tester;
• ChatGPT Lite - the tester prompts ChatGPT to generate

a test script based on the test description, copies the
generated script to the IDE and manually refines it as
needed, without further interaction with ChatGPT;

• ChatGPT Max - similar to Lite, but the tester may engage
in a conversation with ChatGPT to refine the initial test
script, before copying it to the IDE;

• Copilot - inside the IDE, the tester starts by providing
the test description in natural language, which guides
Github Copilot in the incremental generation of code
suggestions, which are reviewed and edited as needed.

They used Gherkin for the description of the test scenarios
in natural language, Java as the scripting language, JUnit as
the test framework, and Selenium WebDriver as the browser
automation library.



In an experiment involving 1 junior tester, 8 real-world
Web applications, and 12 Gherkin test cases per application
(crafted by one of the authors), they found that the Manual
approach took the longest (median of 54 seconds per Gherkin
line of code), while ChatGPT Max required the least time
(38 seconds per line), with statistically significant productivity
gains. ChatGPT Lite and Copilot had quite similar results
(medians of 47 and 45 seconds per line, respectively).

In contrast, Test Flow’s prompt includes the HTML code of
the pages under test, drastically reducing the need for manual
refinements to provide correct locators of UI elements, leading
to potentially higher productivity gains.

In [17], the authors compared the manual effort required for
three Web test automation approaches:

• Programmable (PT) - manually implemented test cases;
• Capture & Replay (CRT) - captures manual interactions

with a tool for later replay;
• NLP-based (NLT) - describes test steps in a domain-

specific language or restricted natural language, inter-
preted by a test automation tool, with special constructs
for identifying the UI elements.

The PT approach used Selenium WebDriver as the browser
automation tool, Java as the programming language and JUnit
as the test framework; the CRT approach used Selenium IDE
to capture the user interactions, and NLT used an unspecified
tool.

They conducted an experiment with 9 real-world Web
applications with multiple releases, 3 junior testers/develop-
ers, and a set of Gherkin test cases written by one of the
authors for each application (used as input specification for
all approaches).

For the initial test suite development, PT required the most
effort, CRT the least, with NLT in between. Over multiple
releases, NLT had the lowest cumulative effort, except in one
high-complexity case. These results reflect CRT’s low script
reusability and NLT’s limited flexibility for high-complexity
applications. Thus, the authors conclude that NLT is well-
suited for low to medium-complexity applications.

In contrast, Test Flow generates test scripts automatically
from Gherkin test specifications with minimal user interven-
tion. This is expected to reduce the initial test development
effort significantly. In cases where automatic generation fails,
users can resort to other approaches.

C. Other Approaches

We found a work [18] that tries to use LLMs and ML to
test Web applications through their GUI in a fully automatic
way. However, the approach is closer to a monkey testing
approach and not a specification-based one. They use GPT-
4 and Selenium WebDriver for automatically exploring and
testing Web applications in an interactive way without user
intervention. In each step, they use Selenium WebDriver to
capture the current state of the GUI and identify possible next
actions on the GUI. Then, they prompt GPT-4 to select the
next GUI action based on the following information: a generic
test goal (such as maximizing the number of actions and states

explored), the HTML code of the Web application, filtering out
irrelevant formatting and behavioural information; the history
of past actions in previous iterations; the possible next actions.
The selected action is then performed in the AUT via Selenium
WebDriver. This process is repeated until a specified number
of interaction steps is reached.

In contrast, our approach is specification- and script-based,
allowing for more comprehensive and repeatable specification
coverage and error detection. Test Flow generates test scripts
based on requirement specifications (user stories) and test
specifications (Gherkin scenarios, including expected outputs),
which, in turn, may be semi-automatically generated using
AutoUAT. Overall, both approaches are complementary.

A few studies [19], [20] have explored generating executable
tests from Gherkin test scenarios using NLP and automated
reasoning techniques, but their targets were Java classes or
Python functions: [19] achieved a 73% success rate on a
sample of 12 scenarios from tutorials, while [20] successfully
translated 80% of scenarios from 20 open-source projects
used to develop the approach and 17% from an additional
50 open-source projects. In contrast, our approach focuses on
generating tests for Web applications through the GUI, posing
distinct challenges, such as identifying target UI elements.

In [21], the authors introduce XUAT-Copilot, an LLM-
powered tool for automating AT of mobile applications,
specifically WeChat Pay. The tool takes a set of test cases
composed of parameterized steps in natural language (similar
to Gherkin) and corresponding test data as input. Three LLM-
based agents—responsible for action planning, state checking,
and parameter selection—collaborate to interpret these steps
and translate them into UI actions on the app via an intermedi-
ate ”skill” library, generating corresponding test scripts. In an
experiment with a sample of passing test cases, XUAT-Copilot
achieved 88.55% success in test case translation (into passing
test scripts), and 93.03% in test step translation.

In contrast, our approach targets Web applications, generat-
ing test scripts directly knowing the HTML of the pages under
test, for a lighter solution. Although our approach already han-
dles scenarios that involve navigation between multiple pages
distinguishable by their URLs, web pages that dynamically
change their structure and single-page applications may benefit
from a more complex approach like XUAT-Copilot.

VI. CONCLUSIONS AND FUTURE WORK

This section summarizes our key findings and suggests
future research directions to enhance the use of LLMs in
acceptance testing.

A. Conclusions

Our study demonstrates the potential of LLMs to improve
the acceptance testing process, by automatically generating
acceptance test scenarios and executable scripts from user
stories. The solution, leveraging GPT-4 Turbo, was designed
to streamline Gherkin scenario creation from user stories
and Cypress script generation from these scenarios. Both
tools received positive feedback, with AutoUAT rated highly



by experienced product owners and Test Flow noted for its
usability and effectiveness in automating test creation.

AutoUAT achieved a 95% acceptance rate in AT generation,
covering both explicit requirements and additional scenarios.
Test Flow generated test scripts with 60% initial accuracy,
rising to 92% with minor refinements, thus reducing developer
workload in creating and verifying test scripts.

While effective, integrating LLMs for AT generation
has challenges, such as ensuring detailed contextual inputs
(namely, product and UI descriptions), managing potential
errors, and addressing cost concerns. Despite these challenges,
our results suggest that LLMs can significantly improve the
acceptance testing process, with time and cost savings.

B. Future Work

This study suggests several directions for future research in
the context of AI-assisted acceptance testing: training models
on domain-specific datasets to enhance AT accuracy, inte-
grating AT generation with project/issue management tools,
exploring the impact of detailed user stories on test qual-
ity, optimizing costs by reducing input token requirements,
conducting broader studies across projects and industries, and
conducting long-term studies to better assess productivity and
quality benefits.

APPENDIX

A. Structure of AutoUAT’s prompt

system:
You are an expert assistant specializing in
creating User Acceptance Tests using Gherkin
language. Your behavior should be that of a
meticulous and detail-oriented professional,
dedicated to producing clear, comprehensive,
and precise User Acceptance Tests. Your
objective is to generate high-quality User
Acceptance Tests based on the provided User
Story titles and descriptions, ensuring no
ambiguities. The tests should be thorough and
follow the Gherkin syntax accurately.

Context:
The User Acceptance Tests you generate will be
used by a development team to validate that

the functionality of the application meets the
specified requirements. It is crucial that

the tests cover various scenarios, including
edge cases, to ensure robust validation. The
User Stories provided will include a title and
a description, and your task is to translate

these into Gherkin language tests.

{% for item in chat_history %}
user:
Here is a User Story title and description.
Generate User Acceptance Tests in Gherkin
language for this User Story.

User Story Title: {{item.inputs.title}}
User Story Description: {{item.inputs.
description}}

Here are the User Acceptance Tests in Gherkin
language for the given User Story:
assistant:
{{item.outputs.answer}}
{% endfor %}

B. Structure of Test Flow’s system prompt

(...Product context information omitted for
confidentiality reasons...)

You will receive a user story, Gherkin
scenarios and HTML of the pages to test.
You are responsible for writing the Cypress
tests for the Gherkin scenarios.

Keep in mind the following best practices:
- You generate the test to be as complete as
possible for the scenario.
- You use the data-test-id to locate the
element if you need to interact with it.
- Keep tests independent, so they can run in
any order.
- Use Cypress built-in assertions.

You already have some Cypress commands and
variables to use in your tests:

```typescript
(...omitted...)
```

Some notes:
- You output the Cypress code only and inside
a markdown code block.
- If any additional information is needed, put
it in a comment inside the code block.

- Pay attention to the html provided when
writing the tests so that you can use the
correct data-testid and Cypress commands to
interact with the elements.
- When using text to assert an element's
content, pay attention to the language of the
page (...).
- Ensure your code includes comments that
guide through the steps for code understanding
and accessibility.

C. Example of User Story

Title: Alphabet User Sign-Up
Description:
• As an Alphabet App user,

I want to access my profile,
So that I can allow for the collection of Analytics.

When the user is in the Profile & Settings Main Page, in the
Legal Information section the user can activate or deactivate
a toggle to allow the collection of data (analytics). This will
communicate with the Backend to guarantee the activation for
analytics tracking.

Actions & Error Handling:
• The user clicks on the toggle. It moves to the right and

becomes green to activate.



• The user clicks on the toggle. It moves to the left and
becomes grey to deactivate.

D. Example of Generated Acceptance Test Scenarios

Feature: Legal Information - Usage Data Tracking
Scenario: User activates the collection of analytics data
• Given the user is on the Profile & Settings Main Page

And the user is in the Legal Information section
When the user clicks on the data collection toggle
Then the toggle should move to the right
And the toggle should turn green
And the backend should be notified to activate analytics
tracking

Scenario: User deactivates the collection of analytics data
• Given the user is on the Profile & Settings Main Page

And the user is in the Legal Information section
When the user clicks on the data collection toggle
Then the toggle should move to the left
And the toggle should turn grey
And the backend should be notified to deactivate analyt-
ics tracking

Scenario: User tries to activate the collection of analytics
data but the backend fails

• Given the user is on the Profile & Settings Main Page
And the user is in the Legal Information section
When the user clicks on the data collection toggle
And the backend fails to activate analytics tracking
Then the toggle should not move to the right
And the toggle should not turn green
And an error message should be displayed

Scenario: User tries to deactivate the collection of analytics
data but the backend fails

• Given the user is on the Profile & Settings Main Page
And the user is in the Legal Information section
When the user clicks on the data collection toggle
And the backend fails to deactivate analytics tracking
Then the toggle should not move to the left
And the toggle should not turn grey
And an error message should be displayed

REFERENCES

[1] T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[2] A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino,
R. Oliveto, and G. Bavota, “On the Robustness of Code Generation
Techniques: An Empirical Study on GitHub Copilot,” 2023, available at
https://arxiv.org/abs/2302.00438.

[3] M. Wermelinger, “Using GitHub Copilot to solve simple programming
problems,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, 2023, pp. 172–178.

[4] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact of ai
on developer productivity: Evidence from github copilot,” arXiv preprint
arXiv:2302.06590, 2023.

[5] BlueOptima Limited, “The impact of generative ai on
software developer performance,” BlueOptima Limited, Tech.
Rep., 2024, © BlueOptima Limited 2005–2024. All Rights
Reserved. [Online]. Available: https://www.blueoptima.com/resource/
dora-lead-time-to-change-useful-but-inadequate/

[6] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language models: Survey, landscape, and vision,” IEEE
Transactions on Software Engineering, 2024.

[7] M. Bolton, “User acceptance testing – a context-driven perspective,”
in Twenty-fifth Annual Pacific Northwest Software Quality Conference.
The Conference, 2007, pp. 535–548.

[8] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. The Pragmatic Bookshelf,
2017.

[9] M. Gärtner, ATDD by example: a practical guide to acceptance test-
driven development. Addison-Wesley Professional, 2013.

[10] M. Moe, “Comparative study of test-driven development tdd, behavior-
driven development bdd and acceptance test–driven development atdd,”
International Journal of Trend in Scientific Research and Development,
pp. 231–234, 06 2019.

[11] B. Garcı́a, J. M. del Alamo, M. Leotta, and F. Ricca, “Exploring browser
automation: A comparative study of selenium, cypress, puppeteer, and
playwright,” in International Conference on the Quality of Information
and Communications Technology. Springer, 2024, pp. 142–149.

[12] B. Haugset and G. K. Hanssen, “Automated acceptance testing: A
literature review and an industrial case stud,” in Agile 2008 Conference.
IEEE, 2008, pp. 27–38.

[13] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[14] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[15] S. Karpurapu, S. Myneni, U. Nettur, L. S. Gajja, D. Burke, T. Stiehm,
and J. Payne, “Comprehensive evaluation and insights into the use of
large language models in the automation of behavior-driven development
acceptance test formulation,” IEEE Access, vol. 12, pp. 58 715–58 721,
2024.

[16] M. Leotta, H. Z. Yousaf, F. Ricca, and B. Garcia, “AI-Generated
Test Scripts for Web E2E Testing with ChatGPT and Copilot: A
Preliminary Study,” in Proceedings of the 28th International Conference
on Evaluation and Assessment in Software Engineering, 2024, pp. 339–
344.

[17] M. Leotta, F. Ricca, A. Marchetto, and D. Olianas, “An empirical
study to compare three web test automation approaches: NLP-based,
programmable, and capture&replay,” Journal of Software: Evolution and
Process, vol. 36, no. 5, p. e2606, 2024.

[18] D. Zimmermann and A. Koziolek, “GUI-Based Software Testing: An
Automated Approach Using GPT-4 and Selenium WebDriver,” in 2023
38th IEEE/ACM International Conference on Automated Software En-
gineering Workshops (ASEW). IEEE, 2023, pp. 171–174.

[19] S. Kamalakar, S. H. Edwards, and T. M. Dao, “Automatically generat-
ing tests from natural language descriptions of software behavior,” in
International Conference on Evaluation of Novel Software Approaches
to Software Engineering, vol. 2. SCITEPRESS, 2013, pp. 238–245.

[20] T. Storer and R. Bob, “Behave nicely! automatic generation of code
for behaviour driven development test suites,” in 2019 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2019, pp. 228–237.

[21] Z. Wang, W. Wang, Z. Li, L. Wang, C. Yi, X. Xu, L. Cao, H. Su,
S. Chen, and J. Zhou, “Xuat-copilot: Multi-agent collaborative system
for automated user acceptance testing with large language model,” arXiv
preprint arXiv:2401.02705, 2024.


